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ABSTRACT

Computations required for temporal reasoning can be prohibitively expensive if fully
general representations are used. Overly simple representations, such as a totally ordered
sequence of time points, are inadequate for use m a nonlinear task planning system. This
work identifies a middle ground which is general enough to support a capable nonlinear
task planner, but specialized enough that the system can support online task planning in real
time. A Temporal Logic System (TLS) was developed during the Martin Marietta
Intelligent Task Automation (ITA) project to support robotic task planning. TLS is also
used within the ITA system to support plan execution, monitoring, and exception handling.

1. INTRODUCTION

Most task planning systems that have been developed to date have represented the change

in the truth of propositions over time within the representation used for plans [Chapman84],
[Wilkins84], [Sacerdoti77], [Sacerdoti73]. Some systems have also represented temporal
durations within the plan representation [Vere83]. By using a temporal logic system to support
planner development the planner itself becomes conceptually much simpler. Temporal truth
maintenance and duration constraint issues can be separated from planning issues. Using a
temporal logic system also simplifies state projection for simultaneous planning and execution and
other temporal representation problems related to plan execution. The temporal logic system
described here is used within the Intelligent Task Automation (ITA) system developed at Martin
Marietta. An overview of the ITA system is given in [Becker87].

To be able to formulate plans, a planner must be able to represent the effects of the
proposed actions that constitute a (partial) plan. Many facilities for representing the effects of
actions can be provided in a temporal logic system, but not every conceivable facility is needed to
support planning. Temporal logic systems provide two primary functions: reasoning about
duration constraint relations, and reasoning about the persistence of facts - also referred to as
temporal truth maintenance [Dean87]. The combination of duration constraint relations and
logical assertions is a kind of database referred to as a time map after [McDermott82].

Mechanisms must be provided to define time points, time intervals and the relationships between
them, and to associate facts with times.

Time intervals may be specified qualitatively or quantitatively. For many planning
problems quantitative duration information is needed so a quantitative representation is used in
TLS. Typical operations on durations include consistency checking and deriving implied temporal
relationships between time points that are not directly connected by a user-specified time interval.

This work was performed at the Intelligent Task Automation project facilities of Martin Marietta
Information and Communications Systems. This work was supported by the Air Force Wright
Aeronautical Laboratories and the Defense Advanced Research Projects Agency under contract
F33615-82-C-5139.
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Theprimaryconcernin temporaltruth maintenanceis managingthepersistence of facts. A

fact indexed in the time map persists until it is clipped at a later time in the time map. Two
additional mechanisms of particular importance to planning are protections [Sussman 75] and
floating queries. If a fact is protected at a certain time (or over a given time interval) then the
temporal logic system will flag a warning if it becomes untrue. Floating queries are similar - if the

query pattern is not matched by a fact at the time point where the query is indexed, then a flag is
raised. Backward and forward chaining inference mechanisms can also be provided to support
reasoning about facts asserted in the time map. It may also be desirable to represent alternative
futures.

2.0 TEMPORAL LOGIC SYSTEM FEATURES

A time map in TLS (Figure 2.0-1) consists of time points, time intervals, assertions, and
inconsistency records. Assertions can be declarations, adders (facts), users (floating queries),
deleters (floating retractions), or rules. Assertions are indexed to time points. Time is represented
as a directed acyclic graph where nodes are time points and edges are time intervals. There are two
distinguished time points in the time map: always and now. Rules and declarations are indexed at
always. Now is the default time used for assertions and queries. Interval durations are
represented numerically by a maximum and minimum value and can indicate either an estimate or a
constraint. Inconsistency records are kept for duration constraint violations, fact conflicts,

unsatisfied users, and protection violations. TLS is implemented in Common Lisp and is used by
invoking Common Lisp functions. TLS functions can be procedurally attached so Common Lisp
functions can be called from within TLS rules as well.
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Figure 2.0-1: A Typical Time Map.
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2.1 Logic System Language

The logic language supported by TLS consists of declarations, facts, and rules. Facts
come in two flavors - functions and relations. A function, such as color (object, red), Can only

have one value at a time. The last symbol in a function pattern represents its value. This is used

within TLS for persistence clipping and to identify conflicting assertions. For example, the
assertion color (object, red) would be clipped by color (object, blue) at a later time point,
perhaps the result of a painting operation. This rule does not apply to relations such as
brother (Ed, John). Relations are handled internally as functions with boolean values, e.g.

brother (Ed, John, T). TLS provides syntactic sugar so that the boolean value may be omitted by
the user when entering relation patterns.

Each functor (first symbol in a fact pattern) must be declared. The declaration specifies
whether the functor denotes a function or a relation, the type of each argument, the value type, and

procedural attachment bindings for procedures to be activated on assertions, retractions, and
queries. The built-in functors include the logical connectives and a number of metalogical
operations. Some example functor declarations from the domains of list and math operations are:

functor

functor

functor

(member object list boolean)

(append list list list)

(+ number number number) :prtcedure +

The first example declares a predicate that could be defined using rules to determine if an object is a
member of a list, the second defines a function that could be defined using rules to combine two
lists into a third list. The third example declares the mathematical addition function to be

procedurally attached to the Lisp + function. The Lisp function is called during queries to
determine the sum of two numbers.

Besides regular fact assertions as provided in Prolog, which are called adders in TLS, TLS
provides user assertions and deleter assertions. An adder assertion is propagated forward through
the time map according to persistence rules. A user assertion is a query pattern that is indexed to a
time point. Whenever the time map is modified, a record of whether the user is satisfied (unifies
with some adder at the same time point) is updated. A user assertion can be protected so that a
flag will be raised when it becomes unsatisfied. A deleter assertion is a retraction pattern that is
indexed to a time point. A propagated adder that matches the deleter will be clipped by it. Neither

users nor deleters are propagated. However, an unsatisfied user may have an associated ghost
adder that is propagated to represent what might be true at later times in the time map if the user
were satisfied. Confidence values can also be associated with adder facts and rules. Adder

confidences are combined according to user-defined functions for disjunction, conjunction, and

implication during forward and backward chaining.

Query operations accept a time parameter that can be a single time point or a set of time

points. If a set of time points is given, then the user can specify whether the proof must hold at
every time point in the given set, or at some time point. The theorem prover used in TLS uses a
backward chaining algorithm as in Prolog. Two important extensions are provided. First, since
facts have associated confidence values, the prover can keep track of the accumulated confidence
associated with a branch of the proof search tree and prune that path if the confidence goes below
some threshold. Second, relations can be declared TRANSITrVE, in which case the prover will

check for and prune circularities. This allows the prover to handle rules for such things as
transitive equality that would otherwise cause infinite loops in the proof. A limited form of
forward chaining is also supported.
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2.2 Duration Consistency Checking

A time map is a directed acyclic graph where nodes are time points and edges are time

intervals. A time map is created by asserting the time points and time intervals of interest. Each
time interval is associated with two time points - its start and end. There are two types of time
intervals, estimated ("it takes 30 to 40 minutes to get to the ticket office") and constrained ("tickets

will be available from 1 to 3 P.M. only"). Time intervals have a minimum and a maximum
duration that is expressed numerically. The notation used is EST (min, max ) for estimated intervals
and CON (min, max ) forconsWahaed intervals.

Duration consistency checking is based on two operations on time intervals: serial
composition, denoted by "&", and parallel composition, denoted by "11". Serial composition is the
process of finding the most constraining interval to represent the combination of two intervals
linked end to end. Parallel composition is the process of finding the most constraining interval to
represent two intervals connected in parallel between the same endpoints, if a consistent

composition exists. The rules for serial and parallel composition are given in Figure 2.2-1.

SERIAL COMPOSITION:

EST(minl,maxl) & EST(min2,max2) -> EST ((minl+ min2), (max1 + max2))

CON(mini,max1) & CON(min2,max2) -> CON ((minl + min2), (max1 + max2))

If ((rnaxl - minl ) < (max2 - rain2))
then EST(minl,maxl) & CON(min2,max2) -> CON ((max1 + min2), (minl + max2))
else EST(minl,maxl) & CON(min2,max2) -> EST ((minl + max2), (max1 + min2))

PARALLEL COMPOSITION:

EST(minl,maxl) II EST(min2,max2) -> EST(minl,maxl)
consistent when: minl = max1 = min2 = max2

CON(mini,max1) II CON(min2,max2) -> CON (max (minl, rnin2), min (max1, max2))
consistent when: max (minl, min2) < min (max1, max2)

EST(minl,maxl) II CON(min2,rnax2) -> EST(minl,maxl)
consistent when: min2 <_minl < max1 < max2

Figure 2.2-1: Duration Composition Rules

Figure 2.2-2 shows a simple time map with a duration conflict due to two parallel paths
from T2 to T3. One path (a single interval) constrains the maximum duration to 14, but the other

path composes to an estimate that the duration can be as long as 15. The estimates must be
tightened or the constraint relaxed in order to resolve the conflict.

co.c,.,) Co°. ,,)

(CON(s. ) --

Figure 2.2-2: Duration Consistency Example
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2.3 Managing Persistences

Adders are propagated through successor times in the time map until a time point with a
conflicting assertion is reached. Adders can be clipped by other adders and by deleters, but not by
users. Adder-adder clipping occurs when fact patterns have the same arguments, but different
values. Adder-deleter clipping occurs when the patterns unify. For example, the adder
location (table, hall) will be clipped by the deleter location (table, $x), where
"$<symbol>" denotes a pattern variable.

Two types of clipping can occur, serial and parallel. Serial clipping occurs when an adder
propagates to a time point at which there is a conflicting assertion. Parallel clipping occurs when

an adder propagates to a time point in parallel with a time point at which there is a conflicting
assertion. The two types of clipping are illustrated in Figure 2.3-1.

Ip_ Time Point 2 LSERIAL CL LOCATION (table, office) I_ PROPAGATION
f

Time Point 1 [ Time Point 4 [

LOCATION (table, hall) [ LOCATION (table, office) I
PARALLEL CLIP.,,_A[ Time Point 3

unknown

Figure 2.3-1: Clipping of Persistences

Fact conflicts can occur between assertions at the same or parallel time points. Fact
conflicts never involve propagated adders because of the clipping mechanism. Fact conflicts can
occur between any pair of adder, user, or deleter assertions. When a fact conflict involves an

adder, it is depropagated (unindexed from all time points except the point it was originally asserted
at) to make the time map reflect its uncertain status. When a fact conflict is found by the time map
mechanism, it is recorded in a slot of the time map. Figure 2.3-2 shows a time map with two fact
conflicts, both involving the assertion hol di ng (arm-1, hamme r) of time point T4. Time point T4
must be ordered with respect to time points TO and T2 in order to resolve the conflicts.

Adder: T4 Iholding(arml,hammer)

H IAdder: TO Adder: T2 holding($arm,$tool)

holding(arm 1,nothing) holding (arm 1,wrench) at(arm 1,$1ocation)

UNSATISFIED USERS:

T1: holding($arm,$tool)
T1 : at(arm1 ,$1ocation)

FACT CONFLICTS:

TO: holding(arml,nothing) o T4:holding(arm1 ,hammer)

12:holding(arm1 ,wrench) <> T4:holding(arm1 ,hammer)

Figure 2.3-2: Time Map With Fact Conflicts
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3.0 IMPLEMENTATION DETAILS

Key details for implementation of the capabilities described above will now be discussed.
This discussion is not complete but does illustrate many aspects of the approach taken in the
implementation of TLS.

3.1 Dynamic Sets

The foundation for the assertion indexing scheme and directed acyclic graph abstract data
type used in TLS is an abstract data type called Dynamic Sets. Dynamic Sets are like the set data
type defined in Pascal, except that the elements of a set type may be defined and changed as a
program runs. This makes it possible to represent a set of assertions or a set of graph nodes. Set
type operations include declaring a new type and adding and removing elements in the type. Set
instance operations include creation, deallocafion, and the usual boolean combiners (e.g. union,
intersection .... ) and predicates (e.g. subset, empty-set?, ...). A set instance is a record structure
with slots for: a pointer back to the set type descriptor, the current size (number of bits) of the set
instance, and a bit vector for specifying members of the set instance. A set instance may be placed
on an "active" list in which case it is automatically updated when an element is removed from the
set type. The bit vectors of set instances are automatically grown as the number of elements in the
set type increases.

3.2 Directed Acyclic Graphs

A directed acyclic graph (DAG) data type was defined to support operations on time maps
such as interval installation and removal, finding predecessor, successor, and parallel time points,
and traversals for assertion persistence computations. The DAG abstract data type is built on top
of the Dynamic Sets abstract data type. Set operations are used instead of mark-and-sweep
techniques for all graph operations. A graph node includes slots for: lists of immediate
predecessors and successors of the node, sets of all predecessors and successors of the node, the
node id, and data to be associated with the node. Updating the sets of all predecessors and
successors of each node when the graph is modified requires a single traversal of the graph. Then,
for example, the graph nodes between two ordered nodes can be determined by intersecting the set
of all successors of the first node and the set of all predecessors of the second node. A mark-and-
sweep algorithm would require marking the successors of the firt node and collecting the marked
predecessors of the second node, i.e. two partial traversals. Since queries of this type far exceed
graph modifications the net computation time savings is significant.

3.3 Assertion Indexing

The indexing scheme used in TLS is illustrated in Figure 3.3-1. Associated with each time
point in the time map is a set of assertions - the assertions that are indexed at that time point. Each
assertion is also indexed according to the elements of the pattern that represents it. Associated with

each .position of a pattern is a table of symbols and associated with each symbol is a set of
assertions that contain that symbol in that position in some pattern. Assertions are also indexed in
one of three sets according to their type: adder, user, or deleter.

Rules are indexed by their conclusion part. Finding all assertions that occur at every
(some) time point in some set of time points is simply an intersection (union) operation. Finding
all patterns that contain certain literals in certain positions is also done by intersecting the
appropriate assertion sets. Pattern variables in assertions are also accounted for in the indexing
scheme. All variables are mapped to a single symbol ($X). When looking up matches to a query
pattern the union of the assertion set for data patterns with a variable in a particular pattern position
and the assertion set for data patterns with the same literal in that position as the query pattern gives

the set of assertions that match the query pattern at that position. The intersection of these sets over
all positions gives the set of patterns that match the query pattern. This match is not equivalent to
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unification since variable binding consistency is not checked so unification test generally follows
the initial lookup.

Symbol -> Assertion Set Tables Assertion Type Indices

Pattern r" $X
...Ir-l I-_'1 I I I I I I IIII Adder Set

P°l_itei°n !-1 red I.__1 ii ii i i i i i i UserSet i ii i i i I ii , I

0_,""_11_1. hammer ._ I I I I II I I I I DeleterSet I I I I I II I I I I
/Ja ,.uaro Illl "
/q]

-[] l Time Point Assertion Sets

-- "
I zz: 'tf!111 II111

Figure 3.3-1: TLS Indexing Scheme

3.4 Duration Consistency Checking

Duration consistency checking is performed using a dynamic programming approach. This
computation is non-incremental so it is possible to make many changes to the time map before
checking for duration consistency. The first step is to partition the time map by removing
redundant time intervals (shortcut constraint intervals with duration zero to infinity) then removing
intervals with no parallel neighbors. For each remaining subgraph, paths of length 2 (two
intervals) are built from paths of length 1 using serial composition. The most constrained path

(MCP) of length 2 is then found between each pair of predecessor/successor time points using
parallel composition. Paths of length 3 are constructed from MCPs of length 1 and 2, and MCPs

of length 3 are found, and so on. This reduction builds new data structures rather than actually
modifying the time map so no constraint information is lost in the process. Duration conflicts
found according to the parallel composition rules are flagged on a slot on the time map.

4. EXAMPLE APPLICATION: THE ITA TASK PLANNER

Task level planning and plan execution functions in the ITA system use TLS as their
knowledge representation substrate. As shown in Figure 4.0-1, the planner adds new states to a

projected future view of the state of the world as a plan is constructed for a given goal. When a
plan is completed, it is decomposed into a set of commands which are added to pending command
queues along with additional synchronization steps. After execution of a command is completed,
an entry is added to a separate history time map. Using this scheme, planning can occur
concurrently with execution. If an exception occurs, planning stops and is resumed only after the
exception handler has modified the current state model to correspond to the actual current state.

The task planner is a hierarchical, nonlinear planner in the same family as TWEAK
[Chapman84], Nonlin [Tate77], and SIPE [Wilkins84]. It is described in more detail in
[Garrett88]. When the task level of the controller receives a new set of goal conditions Start and

end time points for the plan to be constructed are installed in the time map after the end time point
of the previous plan. The expected state of the world is automatically projected by the time map
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mechanisms. The goal conditions are installed as users at the end time point of the plan. Any
goals not satisfied by conditions at the start time point of the plan will now appear on the
unsatisfied users slot of the time map. First, a check is made of the conflict slots of the time map.

Any conflict at this point indicates that conflicting goals were given to the planner, so the planner
fails without doing any work.

PLANNER_ns

I v

Currently Executing

EXECUTIVE VIEW

"Now" "rime.,_ r"

History Built from r

Reply and Information
Messages

II v II v I

Plan Next Plan Plan Under Construction

Plan commands queued

............................................_...w...h..en._.plan completed.

] [] [] [] [] -- -- -- Command

i Queues
] DD D r7 - - -,

Current Time

Figure 4.0-1: Use of Time Map for Planning and Plan Execution

The task planner finds the set of highest level unsatisfied goals and then finds the set of
operators that can plan for any of the goals. The operators are ranked according to user-provided
heuristics and the "best" operator is installed in the time map by creating a time interval that
represents the start, end, and duration of the operator. Additional intervals are asserted so that the
operator is constrained to occur within the plan and before all operators whose subgoals it plans
for. Goals that the new operator plans for are protected so that the time map will indicate when
those goals are clobbered. Goals that are satisfied but not explicitly planned for are not protected.
When these goals are clobbered they are said to be reactivated. Preconditions of the new operator
are installed as user assertions in the time map at the start time point of the operator.
Postconditions are installed as adder and deleter assertions in the time map. ff the fact conflict slot

of the time map is not empty, the planner uses heuristics to choose a preferred ordering and installs
additional intervals in the time map. Backtracking choices are recorded for alternative operators
and orderings. Backtracking occurs when a planned-for goal is clobbered, or when no satisfactory
operator or ordering can be found.

5. RELATED WORK

Much of the work done on temporal reasoning has been concerned with computing

closures of temporal relations expressed in a qualitative interval logic [Allen83], [Vilain86],
[Ladkin88]. However, TLS is closest in spirit to the Time Map Manager (TMM) system described
in [Dean87]. Durations in TLS are represented numerically rather than qualitatively as in TMM.

For many real world problems, such as travel planning, the ability to represent durations
numerically is a necessity. With a numerical representation consistency checking can be performed
without computing the closure of implied duration relationships between all time points thus
avoiding exponential computation time. The consistency checking mechanism used in TLS is based
on a dynamic programming rather than a propagation approach as in TMM. An advantage of the
dynamic programming approach is that many changes can be made to the time map before checking
the constraints again. This can result in a savings in computation time. In addition, TLS supports
estimates as well as constraints in its representation of duration. In [Brooks82] a similar though
more powerful mechanism is applied in the domain of geometric error analysis for robot planning.
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Assertions in TLS are indexed to time points as in TWEAK [Chapman84]rather than to
time intervals asin TMM - this is primarily an implementation detail since the two methods are
conceptually equivalent. The modal truth criterion definedby Chapmanis not fully supportedby
either TMM or TLS since neither supportsrepresentationof possible persistence of assertions.

The deductive proof mechanism used in TLS is similar to that used in Prolog [Clocksin84] with
extensions for proof subtree pruning based on recurring goals in the proof tree as described in
[Smith85]. TMM provides more complex mechanisms to support temporal imagery than TLS
which only provides simple forward chaining. Some ideas about inheritance between theories
used in TLS are based on experience with MRS [Genesereth84].

6. CONCLUSIONS

A temporal logic system that was implemented to support task level planning and plan
execution in a hierarchical robot controller has been described. The system is efficient enough to

support online real-time p.lanning. Some features have been omitted that might be desirable for
supporting other applications. Careful consideration is being given to possible extensions that
could be implemented without significantly degrading performance. Other applications of TLS are
being investigated, such as causal modeling of electrical power distribution systems to support
fault diagnosis. The availability of a temporal logic system provides not only a new way of
thinking about how to build a planning system, but provides a new way of thinking about solving

many different kinds of problems.
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